Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.471
Filtrar
1.
Cells ; 12(23)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067124

RESUMO

Mast cells (MCs) are sentinel cells which represent an important part of the first line of defense of the immune system. MCs highly express receptors for danger-associated molecular patterns (DAMPs) such as the IL-33R and P2X7, making MCs to potentially effective sensors for IL-33 and adenosine-triphosphate (ATP), two alarmins which are released upon necrosis-induced cell damage in peripheral tissues. Besides receptors for alarmins, MCs also express the stem cell factor (SCF) receptor c-Kit, which typically mediates MC differentiation, proliferation and survival. By using bone marrow-derived MCs (BMMCs), ELISA and flow cytometry experiments, as well as p65/RelA and NFAT reporter MCs, we aimed to investigate the influence of SCF on alarmin-induced signaling pathways and the resulting cytokine production and degranulation. We found that the presence of SCF boosted the cytokine production but not degranulation in MCs which simultaneously sense ATP and IL-33 (ATP/IL-33 co-sensing). Therefore, we conclude that SCF maintains the functionality of MCs in peripheral tissues to ensure appropriate MC reactions upon cell damage, induced by pathogens or allergens.


Assuntos
Citocinas , Mastócitos , Fator de Células-Tronco , Trifosfato de Adenosina/metabolismo , Alarminas/metabolismo , Citocinas/metabolismo , Interleucina-33/metabolismo , Mastócitos/metabolismo , Fator de Células-Tronco/farmacologia , Fator de Células-Tronco/fisiologia , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL
2.
Anat Histol Embryol ; 52(6): 1010-1015, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37694739

RESUMO

In mammals, activation of primordial follicles to primary follicle is a progressive and highly regulated process. There is evidence in mice that phosphatase and tensin homologue deleted on Chromosome 10 (PTEN) silencing is an important negative regulator of phosphatidylinositol 3-kinase (PI3K), which initiates activation of dormant follicles. The objective of the study was to evaluate the effect of the addition of PTEN inhibitor (bpV(HOpic)) (10 µM) and/or Kit Ligand (KL) (100 ng/mL) on the in vitro activation and survival of alpaca primordial follicles. Ovarian cortical fragments from 11 adult alpacas were cultured for 24 h in tissue culture medium (α-MEM+ ) supplemented with KL and bpV or the association of both. Subsequently, each sample was processed by classical histology and follicular counting and classification were performed. The results obtained show a reduction (p < 0.05) of primordial follicles in more than 50% in follicular tissue cultured in vitro in α-MEM+ or supplemented with bpV and/or KL versus the control (not cultured). Further, >25% increase in primary follicles in follicular tissue cultured in vitro in α-MEM+ or supplemented with KL and/or bpV versus control. However, the follicular survival rate showed a decrease of 20% in the cultured tissues, except for the α-MEM+ supplemented with KL and bpV. In conclusion, supplementation of bpV (HOpic) (10 µM) and KL (100 ng/mL) increased the activation in vitro of primordial follicles and survival after in vitro culture of alpaca ovarian tissue.


Assuntos
Camelídeos Americanos , Feminino , Animais , Camundongos , Fator de Células-Tronco/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Folículo Ovariano/fisiologia
3.
Artif Organs ; 47(12): 1818-1830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698035

RESUMO

PURPOSE: Development of organoids using human primary testicular cells has remained a challenge due to the complexity of the mammalian testicular cytoarchitecture and culture methods. In this study, we generated testicular organoids derived from human primary testicular cells. Then, we evaluated the effect of stem cell factor (SCF) on cell differentiation and apoptosis in the testicular organoid model. METHODS: The testicular cells were harvested from the three brain-dead donors. Human spermatogonial stem cells (SSCs) were characterized using immunocytochemistry (ICC), RT-PCR and flow cytometry. Testicular organoids were generated from primary testicular cells by hanging drop culture method and were cultured in three groups: control group, experimental group 1 (treated FSH and retinoic acid (RA)), and experimental group 2 (treated FSH, RA and SCF), for five weeks. We assessed the expression of SCP3 (Synaptonemal Complex Protein 3) as a meiotic gene, PRM2 (Protamine 2) as a post-meiotic marker and apoptotic genes of Bax (BCL2-Associated X Protein) and Bcl-2 (B-cell lymphoma 2), respectively by using RT-qPCR. In addition, we identified the expression of PRM2 by immunohistochemistry (IHC). RESULTS: Relative expression of SCP3, PRM2 and Bcl-2 were highest in group 2 after five weeks of culture. In contrast, BAX expression level was lower in experimental group 2 in comparison with other groups. IHC analyses indicated the highest expression of PRM2 as a postmeiotic marker in group 2 in comparison to 2D culture and control groups but not find significant differences between experimental group 1 and experimental group 2 groups. Morphological evaluations revealed that organoids are compact spherical structures and in the peripheral region composed of uncharacterized elongated fibroblast-like cells. CONCLUSION: Our findings revealed that the testicular organoid culture system promote the spermatogonial stem cell (SSC) differentiation, especially in presence of SCF. Developed organoids are capable of recapitulating many important properties of a stem cell niche.


Assuntos
Espermatogônias , Fator de Células-Tronco , Masculino , Animais , Humanos , Fator de Células-Tronco/farmacologia , Fator de Células-Tronco/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Espermatogônias/metabolismo , Espermatogênese/genética , Diferenciação Celular , Organoides , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Células Cultivadas , Mamíferos
4.
Oncogene ; 42(34): 2578-2588, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468679

RESUMO

Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and is typically driven by a single mutation in the Kit or PDGFRA receptor. While highly effective, tyrosine kinase inhibitors (TKIs) are not curative. The natural ligand for the Kit receptor is Kit ligand (KitL), which exists in both soluble and membrane-bound forms. While KitL is known to stimulate human GIST cell lines in vitro, we used a genetically engineered mouse model of GIST containing a common human KIT mutation to investigate the intratumoral sources of KitL, importance of KitL during GIST oncogenesis, and contribution of soluble KitL to tumor growth in vivo. We discovered that in addition to tumor cells, endothelia and smooth muscle cells produced KitL in KitV558Δ/+ tumors, even after imatinib therapy. Genetic reduction of total KitL in tumor cells of KitV558Δ/+ mice impaired tumor growth in vivo. Similarly, genetic reduction of tumor cell soluble KitL in KitV558Δ/+ mice decreased tumor size. By RNA sequencing, quantitative PCR, and immunohistochemistry, KitL expression was heterogeneous in human GIST specimens. In particular, PDGFRA-mutant tumors had much higher KitL expression than Kit-mutant tumors, suggesting the benefit of Kit activation in the absence of mutant KIT. Serum KitL was higher in GIST patients with tumors resistant to imatinib and in those with tumors expressing more KitL RNA. Overall, KitL supports the growth of GIST at baseline and after imatinib therapy and remains a potential biomarker and therapeutic target.


Assuntos
Antineoplásicos , Tumores do Estroma Gastrointestinal , Humanos , Camundongos , Animais , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Fator de Células-Tronco/genética , Fator de Células-Tronco/farmacologia , Fator de Células-Tronco/uso terapêutico , Pirimidinas/farmacologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Benzamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-kit , Mutação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Cells ; 12(9)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174705

RESUMO

Mast cells (MCs) are key effector cells in allergic and inflammatory diseases, and the SCF/KIT axis regulates most aspects of the cells' biology. Using terminally differentiated skin MCs, we recently reported on proteome-wide phosphorylation changes initiated by KIT dimerization. C1orf186/RHEX was revealed as one of the proteins to become heavily phosphorylated. Its function in MCs is undefined and only some information is available for erythroblasts. Using public databases and our own data, we now report that RHEX exhibits highly restricted expression with a clear dominance in MCs. While expression is most pronounced in mature MCs, RHEX is also abundant in immature/transformed MC cell lines (HMC-1, LAD2), suggesting early expression with further increase during differentiation. Using RHEX-selective RNA interference, we reveal that RHEX unexpectedly acts as a negative regulator of SCF-supported skin MC survival. This finding is substantiated by RHEX's interference with KIT signal transduction, whereby ERK1/2 and p38 both were more strongly activated when RHEX was attenuated. Comparing RHEX and capicua (a recently identified repressor) revealed that each protein preferentially suppresses other signaling modules elicited by KIT. Induction of immediate-early genes strictly requires ERK1/2 in SCF-triggered MCs; we now demonstrate that RHEX diminution translates to this downstream event, and thereby enhances NR4A2, JUNB, and EGR1 induction. Collectively, our study reveals RHEX as a repressor of KIT signaling and function in MCs. As an abundant and selective lineage marker, RHEX may have various roles in the lineage, and the provided framework will enable future work on its involvement in other crucial processes.


Assuntos
Mastócitos , Fator de Células-Tronco , Humanos , Mastócitos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Pele/metabolismo , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/farmacologia
6.
Gerontology ; 69(5): 628-640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36720215

RESUMO

INTRODUCTION: Youthful blood environment was shown to decelerate the aging process of the kidney and to attenuate senile renal fibrosis in a young-old parabiotic animal model; in addition, we identified a stem cell factor (SCF) that is closely linked with the process. This research was to investigate the effect of youthful blood environment on senile renal interstitial fibrosis and the role of SCF. METHODS: We bred SCF receptor c-Kit gene loss-of-function Wps/Wps mice and established a combination mice model that was subjected to unilateral ureteral obstructive (UUO) and parabiotic surgeries. Parabiotic mice were divided into isochronic parabiotic (young-young [Y-IP] and old-old [O-IP]) and heterochronic parabiotic (young-old [HP]) groups. UUO surgery was performed in one of the parabiotic pairs in the IP group (Y-IPuuo and O-IPuuo) and in the elderly mice in the HP group (O-HPuuo). In order to study the role of SCF/c-kit on renal interstitial fibrosis, UUO surgery was performed in wildtype (WT) and Wps/Wps mice. RESULTS: Fourteen days after UUO surgery, the kidney interstitial fibrosis area, kidney function, and the expressions of SCF/c-Kit, pNF-κB, and fibrosis-related proteins in the O-HPuuo group were significantly lower than those in the Ouuo and O-IPuuo groups. Compared with WT UUO mice, the expressions of pNF-κB and fibrosis-related proteins and the kidney function were all significantly decreased in Wps/Wps UUO mice. CONCLUSION: Youthful blood environment downregulated the expressions of SCF/c-Kit in elderly UUO mice and ameliorated UUO-induced kidney fibrosis and function loss.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/farmacologia , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Nefropatias/genética , Nefropatias/metabolismo , Rim/patologia , Fibrose , Modelos Animais de Doenças
7.
Mol Hum Reprod ; 29(1)2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36477300

RESUMO

Dormant primordial follicles (PFs) are the most abundant reproductive resource in mammalian ovaries. With advances in the mechanism of study of the regulation of PF activation, PFs have been used to improve fertility in clinical practice. As a central controlling element of follicle activation signaling, the pre-granulosa cell-secreted stem cell factor (SCF; also known as KIT ligand, KITL), which initiates the growth of dormant oocytes, is an ideal natural activator that stimulates follicle activation. However, no systematic study has been conducted to identify the activating effect of SCF in vivo and in vitro. In this study, by combining an in vitro whole ovary culture system and several mouse models, we provide a series of experimental evidence that SCF is an efficient activator for improving PF activation in mouse ovaries. Our in vitro study showed that SCF increased phosphatidylinositol 3-kinase (PI3K) signaling and PF activation ratio in neonatal ovaries. In vivo ovarian non-invasive topical administrations of SCF to the ovaries efficiently improved follicle activation and development, oocyte retrieval ratio and fertility in inducible premature ovarian insufficiency mouse models and aged mice. Our study suggests that SCF is an efficient growth factor that can be applied to improve PF activation.


Assuntos
Folículo Ovariano , Insuficiência Ovariana Primária , Fator de Células-Tronco , Animais , Feminino , Camundongos , Mamíferos , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Ovário/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Células-Tronco/farmacologia , Fator de Células-Tronco/metabolismo , Insuficiência Ovariana Primária/metabolismo
8.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361533

RESUMO

The ex vivo expansion and maintenance of long-term hematopoietic stem cells (LT-HSC) is crucial for stem cell-based gene therapy. A combination of stem cell factor (SCF), thrombopoietin (TPO), FLT3 ligand (FLT3) and interleukin 3 (IL3) cytokines has been commonly used in clinical settings for the expansion of CD34+ from different sources, prior to transplantation. To assess the effect of IL3 on repopulating capacity of cultured CD34+ cells, we employed the commonly used combination of STF, TPO and FILT3 with or without IL3. Expanded cells were transplanted into NSG mice, followed by secondary transplantation. Overall, this study shows that IL3 leads to lower human cell engraftment and repopulating capacity in NSG mice, suggesting a negative effect of IL3 on HSC self-renewal. We, therefore, recommend omitting IL3 from HSC-based gene therapy protocols.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Interleucina-3 , Animais , Humanos , Camundongos , Antígenos CD34 , Células Cultivadas , Citocinas/farmacologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Interleucina-3/farmacologia , Fator de Células-Tronco/farmacologia , Trombopoetina/farmacologia
9.
Stem Cell Reports ; 17(12): 2585-2594, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36332632

RESUMO

Human leukocyte antigen (HLA)-matched cord blood (CB) transplantation is a procedure for the treatment of certain hematological malignancies, hemoglobinopathies, and autoimmune disorders. However, one of the challenges is to provide a sufficient number of T cell-depleted hematopoietic stem and progenitor cells. Currently, only 4%-5% of the CB units stored in CB banks contain enough CD34+ cells for engrafting 70-kg patients. To support this clinical need, we have developed an automated expansion protocol for CB-derived CD34+ cells in the Quantum system's dynamic perfusion bioreactor using a novel cytokine cocktail comprised of stem cell factor (SCF), thrombopoietin (TPO), fms-like tyrosine kinase 3 ligand (Flt-3L), interleukin-3 (IL-3), IL-6, glial cell line-derived neurotrophic factor (GDNF), StemRegenin 1 (SR-1), and a fibronectin-stromal-cell-derived factor-1 (SDF-1)-coated membrane. In an 8-day expansion of a 2 × 106 positively selected CD34+ cell inoculum from 3 donor lineages, the mean cell harvest and cell viability were 1.02 × 108 cells and 95.5%, respectively, and the mean frequency of the CD45+CD34+ immunophenotype was 54.3%. The mean differentiated cell frequencies were 0.5% for lymphocytes, 15.8% for neutrophils, and 15.4% for platelets. These results demonstrate that the automated monoculture protocol can support the expansion of CD34+ cells with minimal lymphocyte residual.


Assuntos
Citocinas , Sangue Fetal , Humanos , Citocinas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Técnicas de Cultura de Células/métodos , Antígenos CD34/metabolismo , Fator de Células-Tronco/farmacologia , Fator de Células-Tronco/metabolismo , Perfusão , Células Cultivadas
10.
EMBO Mol Med ; 14(9): e14891, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35811493

RESUMO

There is an increasing need to develop biological anti-inflammatory agents that are more targeted, effective, and with lesser side effects as compared to conventional chemical drugs. In the present study, we found that Mycobacterium tuberculosis protein PPE2 and a synthetic derivative peptide can suppress the mast cell population and inhibit several vasoactive and fibrogenic mediators and pro-inflammatory cytokines induced by mast cells in formalin-induced tissue injury. PPE2 was found to inhibit transcription from the promoter of stem cell factor, important for mast cell maintenance and migration. Thus, PPE2/peptide can be used as a potent nonsteroidal therapeutic agent for the treatment of inflammation and tissue injury.


Assuntos
Mycobacterium tuberculosis , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mastócitos/metabolismo , Peptídeos/metabolismo , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/farmacologia
11.
Allergy ; 77(11): 3337-3349, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35652819

RESUMO

BACKGROUND: The SCF/KIT axis regulates nearly all aspects of mast cell (MC) biology. A comprehensive view of SCF-triggered phosphorylation dynamics is lacking. The relationship between signaling modules and SCF-supported functions likewise remains ill-defined. METHODS: Mast cells were isolated from human skin; upon stimulation by SCF, global phosphoproteomic changes were analyzed by LC-MS/MS and selectively validated by immunoblotting. MC survival was inspected by YoPro; BrdU incorporation served to monitor proliferation. Gene expression was quantified by RT-qPCR and cytokines by ELISA. Pharmacological inhibitors were supplemented by ERK1 and/or ERK2 knockdown. CIC translocation and degradation were studied in nuclear and cytoplasmic fractions. CIC's impact on KIT signaling and function was assessed following RNA interference. RESULTS: ≈5400 out of ≈10,500 phosphosites experienced regulation by SCF. The MEK/ERK cascade was strongly induced surpassing STAT5 > PI3K/Akt > p38 > JNK. Comparison between MEK/ERK's and PI3K's support of basic programs (apoptosis, proliferation) revealed equipotency between modules. In functional outputs (gene expression, cytokines), ERK was the most influential kinase. OSM and LIF production was identified in skin MCs. Strikingly, SCF triggered massive phosphorylation of a protein not associated with KIT previously: CIC. Phosphorylation was followed by CIC's cytoplasmic appearance and degradation, the latter sensitive to protease but not preoteasome inhibition. Both shuttling and degradation were ERK-dependent. Conversely, CIC-siRNA facilitated KIT signaling, functional outputs, and survival. CONCLUSION: The SCF/KIT axis shows notable strength in MCs, and MEK/ERK as most prominent module. An inhibitory circuit exists between KIT and CIC. CIC stabilization in MCs may turn out as a therapeutic option to interfere with allergic and MC-driven diseases.


Assuntos
Mastócitos , Fator de Células-Tronco , Humanos , Cromatografia Líquida , Citocinas/metabolismo , Mastócitos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Fator de Células-Tronco/farmacologia , Fator de Células-Tronco/metabolismo , Espectrometria de Massas em Tandem , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
12.
Acta Neuropathol Commun ; 9(1): 63, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832542

RESUMO

Traumatic brain injury (TBI) is a major cause of long-term disability in young adults. An evidence-based treatment for TBI recovery, especially in the chronic phase, is not yet available. Using a severe TBI mouse model, we demonstrate that the neurorestorative efficacy of repeated treatments with stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) (SCF + G-CSF) in the chronic phase is superior to SCF + G-CSF single treatment. SCF + G-CSF treatment initiated at 3 months post-TBI enhances contralesional corticospinal tract sprouting into the denervated side of the cervical spinal cord and re-balances the TBI-induced overgrown synapses in the hippocampus by enhancing microglial function of synaptic pruning. These neurorestorative changes are associated with SCF + G-CSF-improved somatosensory-motor function and spatial learning. In the chronic phase of TBI, severe TBI-caused microglial degeneration in the cortex and hippocampus is ameliorated by SCF + G-CSF treatment. These findings reveal the therapeutic potential and possible mechanism of SCF + G-CSF treatment in brain repair during the chronic phase of severe TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fator de Células-Tronco/farmacologia , Animais , Axônios/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
13.
Am J Obstet Gynecol ; 225(1): 65.e1-65.e14, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33539826

RESUMO

BACKGROUND: Ovarian senescence is a normal age-associated phenomenon, but increasingly younger women are affected by diminished ovarian reserves or premature ovarian insufficiency. There is an urgent need for developing therapies to improve ovarian function in these patients. In this context, previous studies suggest that stem cell-secreted factors could have regenerative properties in the ovaries. OBJECTIVE: This study aimed to test the ability of various human plasma sources, enriched in stem cell-secreted factors, and the mechanisms behind their regenerative properties, to repair ovarian damage and to promote follicular development. STUDY DESIGN: In the first phase, the effects of human plasma enriched in bone marrow stem cell soluble factors by granulocyte colony-stimulating factor mobilization, umbilical cord blood plasma, and their activated forms on ovarian niche, follicle development, and breeding performance were assessed in mouse models of chemotherapy-induced ovarian damage (n=7 per group). In addition, the proteomic profile of each plasma was analyzed to find putative proteins and mechanism involved in their regenerative properties in ovarian tissue. In the second phase, the most effective plasma treatment was validated in human ovarian cortex xenografted in immunodeficient mice (n=4 per group). RESULTS: Infusion of human plasma enriched bone marrow stem cell soluble factors by granulocyte colony-stimulating factor mobilization or of umbilical cord blood plasma-induced varying degrees of microvessel formation and cell proliferation and reduced apoptosis in ovarian tissue to rescue follicular development and fertility in mouse models of ovarian damage. Plasma activation enhanced these effects. Activated granulocyte colony-stimulating factor plasma was the most potent inducing ovarian rescue in both mice and human ovaries, and proteomic analysis indicated that its effects may be mediated by soluble factors related to cell cycle and apoptosis, gene expression, signal transduction, cell communication, response to stress, and DNA repair of double-strand breaks, the most common form of age-induced damage in oocytes. CONCLUSION: Our findings suggested that stem cell-secreted factors present in both granulocyte colony-stimulating factor-mobilized and umbilical cord blood plasma could be an effective treatment for increasing the reproductive outcomes in women with impaired ovarian function owing to several causes. The activated granulocyte colony-stimulating factor plasma, which is already enriched in both stem cell-secreted factors and platelet-enclosed growth factors, seems to be the most promising treatment because of its most potent restorative effects on the ovary together with the autologous source.


Assuntos
Fatores de Crescimento de Células Hematopoéticas/uso terapêutico , Folículo Ovariano/efeitos dos fármacos , Reserva Ovariana/efeitos dos fármacos , Ovário/efeitos dos fármacos , Insuficiência Ovariana Primária/tratamento farmacológico , Células-Tronco/metabolismo , Animais , Células da Medula Óssea , Modelos Animais de Doenças , Feminino , Sangue Fetal , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fatores de Crescimento de Células Hematopoéticas/farmacologia , Xenoenxertos , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos NOD , Folículo Ovariano/crescimento & desenvolvimento , Ovário/transplante , Plasma/química , Fator de Células-Tronco/farmacologia
14.
Reprod Sci ; 28(4): 963-972, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33492648

RESUMO

Several lines of evidence strongly suggest that retinoic acid (RA) and stem cell factor (SCF)/c-Kit signal transduction pathways are involved in the differentiation of spermatogonial stem cells (SSCs). This study was aimed to investigate the effect of RA and SCF on in vitro differentiation of SSCs via evaluation of the mRNA expression of meiosis-specific genes in cultured testicular tissues. Testicular tissue samples were obtained from bilaterally vasectomized rats and also healthy adult rats and then were cultured for 25, 30, and 35 days on different conditions. The cultured testicular pieces were sectioned and stained with PAS to histological analysis. The total RNA was extracted from cultured testicular samples, and the expression of ACR, PRTM1, SYCP3, STRA8, c-KIT, PIWIL2, and OCT4 genes at mRNA level was quantified using real-time polymerase chain reaction (qPCR) procedure. After 1-month surgery, bilateral testicular weight showed a significant decrease in vasectomized adult rats compared with healthy adult rats (P < 0.05). Reduction in the diameter of the seminiferous tubules and depletion of advanced germinal elements in vasectomized rats compared with healthy adult rats were also observed. Our findings also demonstrated that the mRNA expression level of PRTM1, STRA8, c-KIT, PIWIL2, and OCT4 genes in cultured testicular tissues significantly up-regulated in experimental group II compared with the control group (P < 0.001). Our findings lead us to conclude that SCF improves in vitro differentiation of SSCs in the OA rats, at least partially, by transcriptionally upregulating PRTM1, STRA8, c-KIT, PIWIL2, and OCT4 genes.


Assuntos
Células-Tronco Germinativas Adultas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fator de Células-Tronco/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Masculino , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar
15.
Mini Rev Med Chem ; 21(13): 1638-1645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390132

RESUMO

Pluripotent stem cells of the bone marrow are stimulated by different cytokines to proliferation and differentiation into various types of blood cells. These cytokines are mostly glycoproteins. Erythropoietin stimulates stem cells to the formation of erythrocytes while colony-stimulating factors cause the formation of different types of white blood cells. Stem cell factors play an important role in the maintenance and survival of blood cells of all types. Thrombopoietin stimulates stem cells to proliferation and formation of blood platelets. Granulocyte colony-stimulating factor is probably the most important drug in use. It stimulates stem cells to the formation of neutrophile granulocytes. It is often used in recombinant forms such as filgrastim in the treatment of neutropenia in cancer chemotherapy or AIDS. Its pegylated conjugates such as pegfilgrastim are also available. Its activity can be supported by plerixafor, a small molecule - bicyclam derivative acting as an indirect agonist of stem cells factor. It acts as an antagonist of CXCR4 receptor activation of which brakes hematopoiesis. The treatment of conditions accompanied by thrombocytopenia such as idiopathic thrombocytopenic purpura is currently not performed by thrombopoietin but synthetic agonists of its receptor are preferred. Romiplostim is a peptibody. It consists of a protein part interacting with the thrombopoietin receptor which is, however, different from thrombopoietin, and of Fc fragment of immunoglobulin G1. In contrast, small molecule thrombopoietin receptor agonists represented by eltrombopag can be given orally unlike all of the above.


Assuntos
Fatores Estimuladores de Colônias/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Fator de Células-Tronco/farmacologia , Trombopoese/efeitos dos fármacos , Benzoatos/química , Benzoatos/farmacologia , Plaquetas/citologia , Plaquetas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Humanos , Hidrazinas/química , Hidrazinas/farmacologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Receptores de Trombopoetina/agonistas , Receptores de Trombopoetina/metabolismo , Bibliotecas de Moléculas Pequenas/química
16.
Haematologica ; 106(6): 1647-1658, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079694

RESUMO

Granulocyte colony-stimulating factor (G-CSF) is widely used in clinical settings to mobilize hematopoietic stem cells (HSCs) into the circulation for HSC harvesting and transplantation. However, whether G-CSF directly stimulates HSCs to change their cell cycle state and fate is controversial. HSCs are a heterogeneous population consisting of different types of HSCs, such as myeloid-biased HSCs and lymphoid-biased HSCs. We hypothesized that G-CSF has different effects on different types of HSCs. To verify this, we performed serum-free single-cell culture and competitive repopulation with cultured cells. Single highly purified HSCs and hematopoietic progenitor cells (HPCs) were cultured with stem cell factor (SCF), SCF + G-CSF, SCF + granulocyte/macrophage (GM)-CSF, or SCF + thrombopoietin (TPO) for 7 days. Compared with SCF alone, SCF + G-CSF increased the number of divisions of cells from the lymphoid-biased HSC-enriched population but not that of cells from the My-bi HSC-enriched population. SCF + G-CSF enhanced the level of reconstitution of lymphoid-biased HSCs but not that of myeloid-biased HSCs. Clonal transplantation assay also showed that SCF + G-CSF did not increase the frequency of myeloid-biased HSCs. These data showed that G-CSF directly acted on lymphoid-biased HSCs but not myeloid-biased HSCs. Our study also revised the cytokine network at early stages of hematopoiesis: SCF directly acted on myeloid-biased HSCs; TPO directly acted on myeloid-biased HSCs and lymphoid-biased HSCs; and GM-CSF acted only on HPCs. Early hematopoiesis is controlled differentially and sequentially by a number of cytokines.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Células-Tronco Hematopoéticas , Animais , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos/farmacologia , Hematopoese , Camundongos , Fator de Células-Tronco/farmacologia , Trombopoetina/farmacologia
17.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096693

RESUMO

Receptor tyrosine kinases (RTKs) are major players in signal transduction, regulating cellular activities in both normal regeneration and malignancy. Thus, many RTKs, c-Kit among them, play key roles in the function of both normal and neoplastic cells, and as such constitute attractive targets for therapeutic intervention. We thus sought to manipulate the self-association of stem cell factor (SCF), the cognate ligand of c-Kit, and hence its suboptimal affinity and activation potency for c-Kit. To this end, we used directed evolution to engineer SCF variants having different c-Kit activation potencies. Our yeast-displayed SCF mutant (SCFM) library screens identified altered dimerization potential and increased affinity for c-Kit by specific SCF-variants. We demonstrated the delicate balance between SCF homo-dimerization, c-Kit binding, and agonistic potencies by structural studies, in vitro binding assays and a functional angiogenesis assay. Importantly, our findings showed that a monomeric SCF variant exhibited superior agonistic potency vs. the wild-type SCF protein and vs. other high-affinity dimeric SCF variants. Our data showed that action of the monomeric ligands in binding to the RTK monomers and inducing receptor dimerization and hence activation was superior to that of the wild-type dimeric ligand, which has a higher affinity to RTK dimers but a lower activation potential. The findings of this study on the binding and c-Kit activation of engineered SCF variants thus provides insights into the structure-function dynamics of ligands and RTKs.


Assuntos
Proteínas Proto-Oncogênicas c-kit/agonistas , Fator de Células-Tronco/farmacologia , Linhagem Celular Tumoral , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/genética
18.
Exp Hematol ; 89: 68-79.e7, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32795499

RESUMO

Hematopoietic stem cells (HSCs) are multipotent cells that form the entire blood system and have the potential to cure several pathogenic conditions directly or indirectly arising from defects within the HSC compartment. Pluripotent stem cells (PSCs) or induced pluripotent stem cells (iPSCs) can give rise to all embryonic cell types; however, efficient in vitro differentiation of HSCs from PSCs remains challenging. HoxB4 is a key regulator orchestrating the differentiation of PSCs into all cells types across the mesodermal lineage, including HSCs. Moreover, the ectopic expression of HoxB4 enhances the in vitro generation and expansion of HSCs. However, several aspects of HoxB4 biology including its regulatory functions are not fully understood. Here, we describe the role of HoxB4 in indirectly inhibiting the emergence of mature CD45+ HSCs from iPSCs in vitro. Forced activation of HoxB4 permitted long-term maintenance of functional hematopoietic stem and progenitor cells (HSPCs), which efficiently reconstituted hematopoiesis upon transplantation. Our method enables an easy and scalable in vitro platform for the generation of HSCs from iPSCs, which will ultimately lead to a better understanding of HSC biology and facilitate preparation of the roadma for producing an unrestricted supply of HSCs for several curative therapies.


Assuntos
Reprogramação Celular/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Mutantes Quiméricas/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Reprogramação Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mutantes Quiméricas/metabolismo , Cultura Primária de Células , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Fator de Células-Tronco/farmacologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Trombopoetina/farmacologia , Fatores de Transcrição/metabolismo , Irradiação Corporal Total
19.
Thorax ; 75(9): 754-763, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32709610

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease which presents a grave prognosis for diagnosed patients. Nintedanib (a triple tyrosine kinase inhibitor) and pirfenidone (unclear mechanism of action) are the only approved therapies for IPF, but have limited efficacy. The pathogenic mechanisms of this disease are not fully elucidated; however, a role for mast cells (MCs) has been postulated. OBJECTIVES: The aim of this work was to investigate a role for MCs in IPF and to understand whether nintedanib or pirfenidone could impact MC function. METHODS AND RESULTS: MCs were significantly elevated in human IPF lung and negatively correlated with baseline lung function (FVC). Importantly, MCs were positively associated with the number of fibroblast foci, which has been linked to increased mortality. Furthermore, MCs were increased in the region immediately surrounding the fibroblast foci, and co-culture studies confirmed a role for MC-fibroblast crosstalk in fibrosis. Nintedanib but not pirfenidone inhibited recombinant stem cell factor (SCF)-induced MC survival. Further evaluation of nintedanib determined that it also inhibited human fibroblast-mediated MC survival. This was likely via a direct effect on ckit (SCF receptor) since nintedanib blocked SCF-stimulated ckit phosphorylation, as well as downstream effects on MC proliferation and cytokine release. In addition, nintedanib ablated the increase in lung MCs and impacted high tissue density frequency (HDFm) in a rat bleomycin model of lung fibrosis. CONCLUSION: Nintedanib inhibits MC survival and activation and thus provides a novel additional mechanism by which this drug may exert anti-fibrotic effects in patients with IPF.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/fisiologia , Fibrose Pulmonar Idiopática/patologia , Indóis/farmacologia , Mastócitos/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Idoso , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Bleomicina , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Fibrose , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/patologia , Masculino , Mastócitos/patologia , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Piridonas/farmacologia , Ratos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Células-Tronco/farmacologia , Capacidade Vital
20.
Brain Res ; 1746: 147000, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579949

RESUMO

Traumatic brain injury (TBI) is a major cause of death and disability in young adults worldwide. TBI-induced long-term cognitive deficits represent a growing clinical problem. Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are involved in neuroprotection and neuronal plasticity. However, the knowledge concerning reparative efficacy of SCF + G-CSF treatment in post-acute TBI recovery remains incomplete. This study aims to determine the efficacy of SCF + G-CSF on post-acute TBI recovery in young adult mice. The controlled cortical impact model of TBI was used for inducing a severe damage in the motor cortex of the right hemisphere in 8-week-old male C57BL mice. SCF + G-CSF treatment was initiated 3 weeks after induction of TBI. Severe TBI led to persistent motor functional deficits (Rota-Rod test) and impaired spatial learning function (water maze test). SCF + G-CSF treatment significantly improved the severe TBI-impaired spatial learning function 6 weeks after treatment. TBI also caused significant increases of Fluoro-Jade C positive degenerating neurons in bilateral frontal cortex, striatum and hippocampus, and significant reductions in MAP2+ apical dendrites and overgrowth of SMI312+ axons in peri-TBI cavity frontal cortex and in the ipsilateral hippocampal CA1 at 24 weeks post-TBI. SCF + G-CSF treatment significantly reduced TBI-induced neurodegeneration in the contralateral frontal cortex and hippocampal CA1, increased MAP2+ apical dendrites in the peri-TBI cavity frontal cortex, and prevented TBI-induced axonal overgrowth in both the peri-TBI cavity frontal cortex and ipsilateral hippocampal CA1.These findings reveal a novel pathology of axonal overgrowth after severe TBI and demonstrate a therapeutic potential of SCF + G-CSF in ameliorating severe TBI-induced long-term neuronal pathology, neurostructural network malformation, and impairments in spatial learning.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Degeneração Neural/patologia , Fator de Células-Tronco/farmacologia , Animais , Encéfalo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...